Goal: Compute arc length and average value for curves.

Arc Length:

For a curve $y = f(x), a \le x \le b$ where f'(x) is continuous, the length of the curve is given by:

For a curve $x = f(y), a \le y \le b$ where f'(y) is continuous, the length of the curve is given by:

1. Find the exact length of the curve given by $y = \frac{1}{2}x^2, 0 \le x \le 2$.

2. Find the exact length of the curve given by $x = y^{3/2}, 0 \le y \le 1$.

3. Find the exact length of the curve given by $y = \ln(\sec(x)), 0 \le x \le \pi/4$.

Average Value: The average value of a function f on the interval [a, b] is given by:

4. Find the average value of the function $f(x) = 4x - x^2$ on the interval [0, 4].

5. Find the average value of the function $g(y) = \sqrt[3]{x}$ on the interval [1,8].

6. Find the average value of the function $h(x) = (\cos(x))^4 \sin(x)$ on the interval $[0, \pi]$.

Mean Value Theorem for Integrals: If f is continuous on [a, b], then there exists a number c in [a, b] such that

7. Let $f(x) = (x-3)^2$. Find c such that the average value of f is equal to f(c) on the interval [2, 5].

8. Let $g(x) = \ln(x)$. Find c such that the average value of g is equal to g(c) on the interval [1,3].

9. If f is continuous as $\int_{1}^{3} f(x) dx = 8$, show that f takes on the value 4 at least once in the interval [1,3].

- 10. Here are some more problems to build your arc length and average value skills!
 - (i) Find the length of $x = \cos(y)$ from y = 0 to $y = \pi$.

(ii) Find the length of $y = \arccos(x)$ from x = -1 to x = 1.

(iii) The velocity (ft/s) of an object at t seconds is given by $v(t) = t^3 - 3\ln(t+1) + 1$. Find the average velocity of the object during the first second of motion.

(iv) $\stackrel{\text{\tiny (iv)}}{=}$ The single share price of stock in ATMOS is given by $p(t) = 4\sin(3t) + \frac{t^3}{2} - 2t^2 + 40$ where t is the number of days after April 5th. Find the average price of ATMOS stock from April 5th to April 9th.

(v) $\stackrel{\text{\tiny MD}}{\Rightarrow}$ Prove the Mean Value Theorem for Integrals by applying the Mean Value Theorem for derivatives to the function $F(x) = \int_{a}^{x} f(t) dt$.