Goal: Compute arc length and average value for curves.

Arc Length:

For a curve $y=f(x), a \leq x \leq b$ where $f^{\prime}(x)$ is continuous, the length of the curve is given by:

For a curve $x=f(y), a \leq y \leq b$ where $f^{\prime}(y)$ is continuous, the length of the curve is given by:

1. Find the exact length of the curve given by $y=\frac{1}{2} x^{2}, 0 \leq x \leq 2$.
2. Find the exact length of the curve given by $x=y^{3 / 2}, 0 \leq y \leq 1$.
3. Find the exact length of the curve given by $y=\ln (\sec (x)), 0 \leq x \leq \pi / 4$.

Average Value: The average value of a function f on the interval $[a, b]$ is given by:
4. Find the average value of the function $f(x)=4 x-x^{2}$ on the interval $[0,4]$.
5. Find the average value of the function $g(y)=\sqrt[3]{x}$ on the interval $[1,8]$.
6. Find the average value of the function $h(x)=(\cos (x))^{4} \sin (x)$ on the interval $[0, \pi]$.

Mean Value Theorem for Integrals: If f is continuous on $[a, b]$, then there exists a number c in $[a, b]$ such that
7. Let $f(x)=(x-3)^{2}$. Find c such that the average value of f is equal to $f(c)$ on the interval $[2,5]$.
8. Let $g(x)=\ln (x)$. Find c such that the average value of g is equal to $g(c)$ on the interval $[1,3]$.
9. If f is continuous as $\int_{1}^{3} f(x) d x=8$, show that f takes on the value 4 at least once in the interval $[1,3]$.
10. Here are some more problems to build your arc length and average value skills!
(i) Find the length of $x=\cos (y)$ from $y=0$ to $y=\pi$.
(ii) Find the length of $y=\arccos (x)$ from $x=-1$ to $x=1$.
(iii) The velocity (ft / s) of an object at t seconds is given by $v(t)=t^{3}-3 \ln (t+1)+1$. Find the average velocity of the object during the first second of motion.
(iv) ${ }^{i / 2}$ The single share price of stock in ATMOS is given by $p(t)=4 \sin (3 t)+\frac{t^{3}}{2}-2 t^{2}+40$ where t is the number of days after April $5^{\text {th }}$. Find the average price of ATMOS stock from April $5^{\text {th }}$ to April $9^{\text {th }}$.
(v) 结 Prove the Mean Value Theorem for Integrals by applying the Mean Value Theorem for derivatives to the function $F(x)=\int_{a}^{x} f(t) d t$.

